AP Calculus BC Scope and Sequence 2025-2026 # **AP Learning Objective Distribution among Units** | | CHA-1.A | СНА-2 А | 1 | CHA-2. | CHV-3 D | | СНА-3.В | CHA-3.C | | CHA-3.E | | CHA-3G | ယ် | CHA-4.A | CHA-4.B | CHA | CHA-4.D | 4. | CHA5.A | | CHA-5.C | CHA-5D | CHA-6.A | CHA-6.B | LIM-1.A | LIM-1.B | 1. | | <u>-1</u> | LIM-2.A | LIM-2.B | | LIM-2.D | LIM-3.A | LIM-4.A | 5. | LIM-5.B | LIM-5.C | LIM-6.A | 7. | LIM-7.B | LIM-8.A | LIM-8.B | LIM-8.C | | | LIM-8.F | LIM-8.G | |---------|---------|---------|---|--------|---------|---|---------|---------|---|---------|---|--------|----|---------|---------|-----|---------|----|--------|---|---------|--------|---------|---------|---------|---------|----|---|-----------|---------|---------|---|---------|---------|---------|----|---------|---------|---------|----|---------|---------|---------|---------|---|---|---------|---------| | Unit 1 | Х | Χ | Х | Χ | Χ | Х | Χ | Χ | Χ | Х | | | | | | | | | | | | | | | | | Unit 2 | | Х | Χ | Χ | Х | Χ | | | | | | | | | | | | | | | | Unit 3 | Unit 4 | | | | | | Χ | Χ | Χ | Х | Χ | Х | Χ | | | | | | | | | | | | | | | Unit 5 | Unit 6 | | | | | | | | | | | | | | Χ | Χ | Χ | Χ | Χ | | | | | | | | | | | Unit 7 | Unit 8 | | | | | | | | | | | | | | | Χ | Χ | Χ | Χ | Χ | Χ | Χ | | Χ | Unit 9 | | | | | | | | | | | | Χ | Χ | | | | | | | | | Χ | | Χ | Unit 10 | Χ | Х | Х | Х | Χ | Χ | Χ | Χ | Χ | | Unit 11 | Х | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ | | | Χ | Χ | Χ | Χ | Χ | Х | Χ | Χ | | | | Χ | Χ | Х | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ | | | | | | | | | | | | | FUN-1.A | FUN-1.B | FUN-1.C | FUN-2.A | FUN-3.A | FUN-3.B | FUN-3.C | FUN-3.D | FUN-3.E | FUN-3.F | FUN-3.G | FUN-4.A | FUN-4.B | FUN-4.C | FUN-4.D | FUN4E | FUN-5.A | FUN-6.A | FUN-6.B | FUN-6.C | FUN-6.D | FUN-6.E | FUN-6.F | FUN-7.A | FUN-7.B | FUN-7.C | FUN-7.D | FUN-7.E | FUN-7.F | FUN-7.G | FUN-7.H | FUN-8.A | FUN-8.B | |---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | Unit 1 | Х | Unit 2 | | | | Χ | Χ | Χ | Unit 3 | | | | | | | Χ | Χ | Χ | Χ | Unit 4 | Unit 5 | | Χ | Χ | | | | | | | | | Χ | Χ | Χ | Χ | Χ | | | | | | | | | | | | | | | | | | | Unit 6 | | | | | | | | | | | | | | | | | Χ | Х | Χ | Χ | Χ | Χ | Χ | | | | | | | | | | | | Unit 7 | Χ | Χ | Х | Χ | Χ | Χ | Χ | Χ | | | | Unit 8 | Unit 9 | | | | | | | | | | | Χ | Χ | Х | | Unit 10 | Unit 11 | Х | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ | | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ | | | Χ | Χ | Χ | Χ | Χ | Χ | Χ | | | | # **AP Calculus BC** # Scope and Sequence 2025-2026 # **Grading Period 1** ### **Unit 1: Limits and Continuity** Estimated Date Range: 8/12/25 – 8/29/25 (14 total school days) Instructional & Re-engagement Days in Unit: 14 days | | | Assessments | | | | | | | | |---|--|---|---|--|--|--|--|--|--| | STATE/NATIONAL ASSESSMENT(S)
N/A | DISTRICT ASSESSMENT(S) N/A COMMON FORMATIVE ASSESSME (administered within designated co. N/A | | | | | | | | | | Concepts within the Unit | | AP Learning Ob | jectives | | | | | | | | Concept #1: Intro to Calculus and Finding
Limits Graphically and Numerically (Topics
1.1, 1.2, 1.3, and 1.4)
Suggested Days: 3 | that in
LIM-1.
LIM-1. | A Interpret the rate of change at an instant in terms of
instant.
.A Express limits analytically using correct notation
.B Interpret limits expressed in analytic notation.
.C Estimate limits of functions | of average rates of change over intervals containing | | | | | | | | Concept #2: Evaluating Limits Algebraically (Topics 1.5, 1.6, 1.7, 1.8 and 1.9) Suggested Days: 4 | | D Determine the limits of functions using limit theore
E Determine the limits of functions using equivalent e | | | | | | | | | Concept #3: Continuity and one-sided
Limits (Topics 1.10, 1.11, 1.12, 1.13, 1.14,
1.15, and 1.16)
Suggested Days: 5 | LIM-2.
LIM-2.
possib | A Justify conclusions about continuity at a point using B Determine intervals over which a function is continu. C Determine values of x or solve for parameters that role. D Interpret the behavior of functions using limits invo an A Explain the behavior of a function on an interval us | uous. make discontinuous functions continuous, if lving infinity. | | | | | | | ### Unit 2: Differentiation: Definition and Basic Derivative Rules Estimated Date Range: 9/2/25 – 9/19/25 (14 total school days) Instructional & Re-engagement Days in Unit: 14 days | | | Assessments | | |--|-------------------------|--|--| | STATE/NATIONAL ASSESSMENT(S)
N/A | | DISTRICT ASSESSMENT(S)
N/A | COMMON FORMATIVE ASSESSMENTS (CFAs) (administered within designated concept) N/A | | Concepts within the Unit | | AP Learning O | bjective | | Concept #1: Defining the Derivative (Topics 2.1, 2.2, 2.3 and 2.4) Suggested Days: 2 | CHA-2
CHA-2
CHA-2 | .A Determine average rates of change using difference. B Represent the derivative of a function as the limit of .C Determine the equation of a line tangent to a curve .D Estimate derivatives. .A Explain the relationship between differentiability a | of a difference quotient.
e at a given point. | | Concept #2: Derivative Rules: Power Rule,
Constant, Sum, Difference, Constant
Multiple, and Transcendental Functions
(Topics 2.5, 2.6 and 2.7)
Suggested Days: 4 | | .A Calculate derivatives of familiar functions. A Interpret a limit as a definition of a derivative. | | | Concept #3: Derivative Rules: Product and Quotient Rules (Topics 2.8, 2.9 and 2.10) Suggested Days: 4 | FUN-3 | .B Calculate derivatives of products and quotients of o | differentiable functions. | ## Unit 3: Differentiation: Composite, Implicit and Inverse Functions Estimated Date Range: 9/22/25 – 10/10/25 (14 total school days) Instructional & Re-engagement Days in Unit: 14 days | | Assessments | | |---|---|--| | STATE/NATIONAL ASSESSMENT(S)
N/A | DISTRICT ASSESSMENT(S) N/A | COMMON FORMATIVE ASSESSMENTS (CFAs) (administered within designated concept) N/A | | Concepts within the Unit | AP Learnir | ng Objective | | · · · · · · · · · · · · · · · · · · · | FUN-3.C Calculate derivatives of compositions of differe
FUN-3.D Calculate derivatives of implicitly defined funct | | | Concept #2: Differentiating Inverse Functions (Topics 3.3, and 3.4) Suggested Days: 3 | FUN-3.E Calculate derivatives of inverse and inverse trig | onometric functions. | | Concept #3: Higher Order Derivatives
(Topics 3.5 and 3.6)
Suggested Days: 3 | FUN-3.F Determine higher order derivatives of a function | n. | | | Grading Period 2 | | | | Unit 4: Contextual Applications of Differentiati
Estimated Date Range: 10/21/25 – 10/31/25 (9 total school
Instructional & Re-engagement Days in Unit: 9 days | | | | Assessments | | | STATE/NATIONAL ASSESSMENT(S)
N/A | DISTRICT ASSESSMENT(S) N/A | COMMON FORMATIVE ASSESSMENTS (CFAs) (administered within designated concept) N/A | # Concepts within the Unit Concept #1: Derivatives in Applied Contexts (Topics 4.1, 4.2 and 4.3) CHA-3.B Calculate rates of change in applied contexts. CHA-3.C Interpret rates of change in applied contexts. CHA-3.C Interpret rates of change in applied contexts. | Concept #2: Related Rates (Topics 4.4 and | CHA-3.D Calculate related rates in applied contexts. | |--|--| | 4.5) | CHA-3.E Interpret related rates in applied contexts. | | Suggested Days: 3 | | | Concept #3: Local Linear Approximations | CHA-3.F Approximate a value on a curve using the equation of a tangent line. | | and L'Hospital's Rule (Topics 4.6 and 4.7) | LIM-4.A Determine limits of functions that result in indeterminate forms. | | Suggested Days: 2 | | | | | | | | **Unit 5: Analytical Applications of Differentiation**Estimated Date Range: 11/3/25 – 11/17/25 (11 total school days) Instructional & Re-engagement Days in Unit: 11 days | | | Assessments | | |---|-------|---|--| | STATE/NATIONAL ASSESSMENT(S)
N/A | | DISTRICT ASSESSMENT(S) N/A | COMMON FORMATIVE ASSESSMENTS (CFAs) (administered within designated concept) N/A | | Concepts within the Unit | | AP Learning Ol | bjective | | Concept #1: Mean Value Theorem and | FUN-1 | B Justify conclusions about functions by applying the | Mean Value Theorem over an interval. | | Extreme Value Theorem (Topics 5.1 and 5.2) Suggested Days: 3 | FUN-1 | C Justify conclusions about functions by applying the | Extreme Value Theorem. | | Concept #2: Analyzing Functions and Curve Fitting (Topics 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 and 6.9) Suggested Days: 3 | FUN-4 | I.A Justify conclusions about the behavior of a function | n based on the behavior of its derivatives. | | Concept #3: Optimization Problems and Behaviors of Implicit Relations (Topics 5.10, 5.11, and 5.12) Suggested Days: 3 | FUN-4 | I.B Calculate minimum and maximum values in applied I.C Interpret minimum and maximum values calculated I.D Determine critical points of implicit relations I.E Justify conclusions about the behavior of an implicitives | d in applied contexts. | ### **Unit 6: Integration and Accumulation of Change** Estimated Date Range: 11/18/25 – 12/19/25 (19 total school days) Instructional & Re-engagement Days in Unit: 15 days | Assessments | | | | | | | | | | | |---|--|--|--|--|--|--|--|--|--|--| | STATE/NATIONAL ASSESSMENT(S)
N/A | DISTRICT ASSESSMENT(S)
N/A | COMMON FORMATIVE ASSESSMENTS (CFAs) (administered within designated concept) N/A | Semester Exams
(4 days)
Testing Window (12/16 – 12/19) | | | | | | | | | Concepts within the Unit | | AP Learning Objective | | | | | | | | | | Concept #1: Exploring Accumulations a Riemann sums (Topics 6.1, 6.2, and 6.3 Suggested Days: 2 | LIM-5.A Approximate a definite LIM-5.B Interpret the limiting ca | of areas associated with the graph of a ra
integral using geometric and numerical n
se of the Riemann sum as a definite integ
ase of the Riemann sum as a definite into | methods.
gral. | | | | | | | | | Concept #2: Accumulation Functions
(Topics 6.4 and 6.5)
Suggested Days: 2 | · | n functions using definite integrals. | | | | | | | | | | Concept #3: Properties od Definite Inte (Topics 6.6 and 6.7) Suggested Days: 3 | | FUN-6.A Calculate a definite integral using areas and properties of definite integrals. FUN-6.B Evaluate definite integrals analytically using the Fundamental Theorem of Calculus. | | | | | | | | | | Concept #4: Finding Antiderivatives and
Techniques for Integration (Topics 6.8,
6.10, 6.11, 6.12 and 6.14)
Suggested Days: 4 | 6.9, FUN-6.D For integrands requirin indefinite integrals. (b) Evaluate FUN-6.E For integrands requiring integrals. FUN-6.F For integrands requiring Evaluate definite integrals. | g integration by parts: (a) Determine inde | quivalent forms: (a) Determine efinite integrals. (b) Evaluate definite a) Determine indefinite integrals. (b) | | | | | | | | | Concept #5: Evaluating Improper Integr
(Topic 6.13)
Suggested Days: 2 | als LIM-6.A Evaluate an improper in | ntegral or determine that the integral dive | erges. | | | | | | | | Concept #3: Logistic Models with Differential Equations (Topic 7.9) Suggested Days: 4 **Grading Period 3 Unit 7: Differential Equations** Estimated Date Range: 1/8/25 - 1/29/25 (15 total school days) Instructional & Re-engagement Days in Unit: 15 days Assessments STATE/NATIONAL ASSESSMENT(S) **DISTRICT ASSESSMENT(S) COMMON FORMATIVE ASSESSMENTS (CFAs)** (administered within designated concept) N/A N/A N/A **Concepts within the Unit AP Learning Objective** Concept #1: Modeling with Differential FUN-7.A Interpret verbal statements of problems as differential equations involving a derivative expression. Equations, Slope Fields, and Rulers Method FUN-7.B Verify solutions to differential equations. (Topics 7.1, 7.2, 7.3, 7.4, and 7.5) FUN-7.C Estimate solutions to differential equations. Suggested Days: 4 Concept #2: Solving Differential Equations FUN-7.D Determine general solutions to differential equations. (Topics 7.6, 7.7, and 7.8) FUN-7.E Determine particular solutions to differential equations. Suggested Days: 5 FUN-7.F Interpret the meaning of a differential equation and its variables in context. FUN-7.H Interpret the meaning of the logistic growth model in context. FUN-7.G Determine general and particular solutions for problems involving differential equations in context. **Unit 8: Applications of Integration** Estimated Date Range: 1/30/25 – 2/27/25 (19 total school days) Instructional & Re-engagement Days in Unit: 19 days Assessments STATE/NATIONAL ASSESSMENT(S) **DISTRICT ASSESSMENT(S) COMMON FORMATIVE ASSESSMENTS (CFAs)** (administered within designated concept) K-12 TELPAS WINDOW (2/17 – 3/27) N/A N/A **Concepts within the Unit AP Learning Objective** Concept #1: Average Value and CHA-4.B Determine the average value of a function using definite integrals **Applications involving Rectilinear Motions** CHA-4.C Determine values for positions and rates of change using definite integrals in problems involving and Rate of Change (Topics 8.1, 8.2 and rectilinear motion. 8.3) CHA-4.D Interpret the meaning of a definite integral in accumulation problems. CHA-4.E Determine net change using definite integrals in applied contexts. Suggested Days: 4 Concept #2: Area (Topics 8.4, 8.5 and 8.6) CHA-5.A Calculate areas in the plane using the definite integral. Suggested Days: 3 Concept #3: Volume (Topics 8.7, 8.8, 8.9, CHA-5.B Calculate volumes of solids with known cross sections using definite integrals 8.10, 8.11, and 8.12) CHA-5.C Calculate volumes of solids of revolution using definite integrals. Suggested Days: 7 Concept #4: Arc Length and Distance CHA-6.A Determine the length of a curve in the plane defined by a function, using a definite integral. Traveled (Topic 8.13) Suggested Days: 2 | Unit 9: Parametric Eq | uations | , Polar Coordinates, and Vector-Valued Functions (| | |---|------------|---|---| | | netruetion | Estimated Date Range: 3/2/25 – 3/31/25 (16 total school days) | | | ı | nstructioi | nal & Re-engagement Days in Unit: 15 days (8 days in GP3 and 7 | days in GP4) | | | | Assessments | | | STATE/NATIONAL ASSESSMENT(S) | | DISTRICT ASSESSMENT(S) | COMMON FORMATIVE ASSESSMENTS (CFAs) | | K-12 TELPAS WINDOW (2/17 – 3/27) | | N/A | (administered within designated concept) | | SAT (3/4) | | | N/A | | Concepts within the Unit | | AD Loarning (| Phiaetiva | | Concept #1 - Parametric Equations (Topics | CHV-3 | AP Learning C G Calculate derivatives of parametric functions. | Dijective | | 9.1, 9.2, and 9.3) | | · | ned by parametric functions, using a definite integral. | | Suggested Days: 4 | 0 | is setermine the length of a carve in the plane dem | ica sy parametra ranscions, asm,g a deminie meegi an | | Concept #2: Vector Valued Functions | CHA-3 | .H Calculate derivatives of vector-valued functions. | | | (Topics 9.4, 9.5, and 9.6) | FUN-8 | .A Determine a particular solution given a rate vecto | r and initial conditions. | | Suggested Days: 5 | FUN-8 | .B Determine values for positions and rates of chang | e in problems involving planar motion. | | | | | | | Concept #3: Polar Coordinates (Topics, 9.7, | | .G Calculate derivatives of functions written in polar | | | 9.8, and 9.9) Suggested Days: 5 | CHA-5 | D Calculate areas of regions defined by polar curves | using definite integrals. | | Suggested Days. 5 | Grading Period 4 | | |--|--|--|--| | | | netric Equations, Polar Coordinates, and Vector-Valu
Estimated Date Range: 3/2/25 – 3/31/25 (16 total school days)
al & Re-engagement Days in Unit: 15 days (8 days in GP3 and 7 da
Note: See Grading Period 3 for details. | | | | | Assessments | | | STATE/NATIONAL ASSESSMENT(S) K-12 TELPAS WINDOW (2/17 – 3/27) SAT (3/4) | | DISTRICT ASSESSMENT(S) N/A | COMMON FORMATIVE ASSESSMENTS (CFAs) (administered within designated concept) N/A | | | | Unit 10: Infinite Sequences and Series Estimated Date Range: 4/1/25 – 5/1/25 (22 total school days) Instructional & Re-engagement Days in Unit: 22 days | | | | | Assessments | | | STATE/NATIONAL ASSESSMENT(S)
N/A | | DISTRICT ASSESSMENT(S)
N/A | COMMON FORMATIVE ASSESSMENTS (CFAs) (administered within designated concept) N/A | | Concepts within the Unit | | AP Learning Ol | bjective | | Concept #1: Infinite Series (Topics 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9, and 10.10) Suggested Days: 10 | | A Determine whether a series converges or diverges.
B Approximate the sum of a series. | | | Concept #2: Taylor Polynomials and Power
Series (Topics 10.11, 10.12, 10.13, 10.14,
and 10.15)
Suggested Days: 10 | LIM-8.
LIM-8.
LIM-8.
LIM-8.
LIM-8. | A Represent a function at a point as a Taylor polynom B Approximate function values using a Taylor polynon C Determine the error bound associated with a Taylor D Determine the radius of convergence and interval of Represent a function as a Taylor series or a Maclaur F Interpret Taylor series and Maclaurin series. G Represent a given function as a power series. | nial.
r polynomial approximation.
f convergence for a power series. | | | Unit 11: AP Review | and Extension Topics | | | | | | | | | | | |--|--|--|--------------------------------|--|--|--|--|--|--|--|--|--| | | | 5 – 5/28/25 (19 total school days) | | | | | | | | | | | | | | gement Days in Unit: 14 days | | | | | | | | | | | | | Asse | ssments | | | | | | | | | | | | STATE/NATIONAL ASSESSMENT(S) | DISTRICT ASSESSMENT(S) | COMMON FORMATIVE | Semester Exams | | | | | | | | | | | AP Exams (5/4-5/15) 1 day | N/A | ASSESSMENTS (CFAs) | (4 days) | | | | | | | | | | | | | (administered within designated concept) Testing Window (5/22 – 5/28 N/A | | | | | | | | | | | | Concepts within the Unit | | AP Learning Objective | | | | | | | | | | | | Concept #1: Limits | LIM-1.A Express limits analytica | lly using correct notation | | | | | | | | | | | | Suggested Days: Determined by individ | · | LIM-1.B Interpret limits expressed in analytic notation. | | | | | | | | | | | | student need | | LIM-1.C Estimate limits of functions | | | | | | | | | | | | | | LIM-1.D Determine the limits of functions using limit theorems. | | | | | | | | | | | | | | LIM-1.E Determine the limits of functions using equivalent expressions for the function or the squeeze theorem. | | | | | | | | | | | | | • | ut continuity at a point using the definition | 1. | | | | | | | | | | | | | er which a function is continuous. | | | | | | | | | | | | | | or solve for parameters that make disconting | nuous functions continuous, if | | | | | | | | | | | | possible. | | | | | | | | | | | | | | LIM-2.D Interpret the behavior of functions using limits involving infinity. | | | | | | | | | | | | | | · | CHA-1.A Interpret the rate of change at an instant in terms of average rates of change over intervals containing | | | | | | | | | | | | | | that instant. | | | | | | | | | | | | Canada #2: Danis atis a | · | FUN-1.A Explain the behavior of a function on an interval using the Intermediate Value Theorem. | | | | | | | | | | | | Concept #2: Derivatives | LIM-3.A Interpret a limit as a de | | | | | | | | | | | | | Suggested Days: Determined by individed student need | | ctions that result in indeterminate forms. | | | | | | | | | | | | student need | _ | es of change using difference quotients. | aaki a.ak | | | | | | | | | | | | | ve of a function as the limit of a difference | • | | | | | | | | | | | | · | CHA-2.C Determine the equation of a line tangent to a curve at a given point. | | | | | | | | | | | | | | CHA-2.D Estimate derivatives. | | | | | | | | | | | | | CHA-3.A Interpret the meaning of a derivative in context. | | | | | | | | | | | | | | | CHA-3.B Calculate rates of change in applied contexts. CHA-3.C Interpret rates of change in applied contexts. | | | | | | | | | | | | | • | | | | | | | | | | | | | | CHA-3.D Calculate related rates | • • | | | | | | | | | | | | | CHA-3.E Interpret related rates | • • |
 | | | | | | | | | | | | CHA-3.F Approximate a value oi | CHA-3.F Approximate a value on a curve using the equation of a tangent line. | | | | | | | | | | | | | CHA-3.G Calculate derivatives of parametric functions. | |---|--| | | FUN-2.A Explain the relationship between differentiability and continuity. | | | FUN-3.A Calculate derivatives of familiar functions. | | | FUN-3.B Calculate derivatives of products and quotients of differentiable functions. | | | FUN-3.C Calculate derivatives of compositions of differentiable functions. | | | FUN-3.D Calculate derivatives of implicitly defined functions. | | | FUN-3.E Calculate derivatives of inverse and inverse trigonometric functions. | | | FUN-3.F Determine higher order derivatives of a function. | | | FUN-1.B Justify conclusions about functions by applying the Mean Value Theorem over an interval. | | | FUN-1.C Justify conclusions about functions by applying the Extreme Value Theorem. | | | FUN-4.A Justify conclusions about the behavior of a function based on the behavior of its derivatives. | | | FUN-4.B Calculate minimum and maximum values in applied contexts or analysis of functions. | | | FUN-4.C Interpret minimum and maximum values calculated in applied contexts. | | | FUN-4.D Determine critical points of implicit relations | | | FUN-4.E Justify conclusions about the behavior of an implicitly defined function based on evidence from its | | | derivatives | | Concept #3: Integrals and the Fundamental | LIM-5.A Approximate a definite integral using geometric and numerical methods. | | Theorem of Calculus | LIM-5.B Interpret the limiting case of the Riemann sum as a definite integral. | | Suggested Days: Determined by individual | LIM-5.C Represent the limiting case of the Riemann sum as a definite integral. | | student need | LIM-6.A Evaluate an improper integral or determine that the integral diverges. | | | CHA-3.H Calculate derivatives of vector-valued functions. | | | CHA-4.A Interpret the meaning of areas associated with the graph of a rate of change in context. | | | CHA-4.B Determine the average value of a function using definite integrals | | | CHA-4.C Determine values for positions and rates of change using definite integrals in problems involving | | | rectilinear motion. | | | CHA-4.D Interpret the meaning of a definite integral in accumulation problems. | | | CHA-4.E Determine net change using definite integrals in applied contexts. | | | CHA-5.A Calculate areas in the plane using the definite integral. | | | CHA-5.B Calculate volumes of solids with known cross sections using definite integrals | | | CHA-5.C Calculate volumes of solids of revolution using definite integrals. | | | CHA-5.D Calculate areas of regions defined by polar curves using definite integrals. | | | CHA-6.A Determine the length of a curve in the plane defined by a function, using a definite integral. | | | CHA-6.B Determine the length of a curve in the plane defined by parametric functions, using a definite integral. | | | FUN-5.A Represent accumulation functions using definite integrals. | | | <u> </u> | | | FUN-6.A Calculate a definite integral using areas and properties of definite integrals. | |--|---| | | FUN-6.B Evaluate definite integrals analytically using the Fundamental Theorem of Calculus. | | | FUN-6.C Determine antiderivatives of functions and indefinite integrals, using knowledge of derivatives. | | | FUN-6.D For integrands requiring substitution or rearrangements into equivalent forms: (a) Determine | | | | | | indefinite integrals. (b) Evaluate definite integrals. | | | FUN-6.E For integrands requiring integration by parts: (a) Determine indefinite integrals. (b) Evaluate definite | | | integrals | | | FUN-6.F For integrands requiring integration by linear partial fractions: (a) Determine indefinite integrals. (b) Evaluate definite integrals | | | FUN-7.A Interpret verbal statements of problems as differential equations involving a derivative expression. | | | FUN-7.B Verify solutions to differential equations. | | | FUN-7.C Estimate solutions to differential equations. | | | FUN-7.D Determine general solutions to differential equations. | | | FUN-7.E Determine particular solutions to differential equations. | | | FUN-7.F Interpret the meaning of a differential equation and its variables in context. | | | FUN-7.G Determine general and particular solutions for problems involving differential equations in context. | | | FUN-7.H Interpret the meaning of the logistic growth model in context | | | FUN-8.A Determine a particular solution given a rate vector and initial conditions. | | | FUN-8.B Determine values for positions and rates of change in problems involving planar motion. | | Concept #4: Series | LIM-7.A Determine whether a series converges or diverges. | | Suggested Days: Determined by individual | LIM-7.B Approximate the sum of a series. | | student need | LIM-8.A Represent a function at a point as a Taylor polynomial. | | | LIM-8.B Approximate function values using a Taylor polynomial. | | | LIM-8.C Determine the error bound associated with a Taylor polynomial approximation. | | | LIM-8.D Determine the radius of convergence and interval of convergence for a power series. | | | LIM-8.E Represent a function as a Taylor series or a Maclaurin series | | | LIM-8.F Interpret Taylor series and Maclaurin series. | | | LIM-8.G Represent a given function as a power series. | | | |